Mark Scheme 4766 January 2006

Q 1	The range $= 55 - 15 = 40$	B1 CAO	
(i)	The interquartile range $= 35 - 26 = 9$	B1 CAO	2
(ii) (iii)	$35 + 1.5 \ge 9 = 48.5$ $26 - 1.5 \ge 9 = 12.5$ Any value > 48.5 is an outlier (so 55 will be an outlier), One valid comment such as eg:	M1 for 48.5 oe M1 for 12.5 oe A1 (FT their IQR in (i)) E1	3
	Positively skewed		1
	Middle 50% of data is closely bunched	ΤΟΤΑΙ	1
2 (i)	Impossible because if 3 letters are correct, the fourth must be also.	E1	1
(ii)	There is only one way to place letters correctly. There are $4! = 24$ ways to arrange 4 letters. OR: $\frac{1}{4} \times \frac{1}{3} \times \frac{1}{2}$ NOTE: ANSWER GIVEN	E1 E1 B1 for $\frac{1}{4} \ge \frac{1}{3}$ B1 for $\ge \frac{1}{2}$	2
(iii)	E(X) = 1 x $\frac{1}{3}$ + 2 x $\frac{1}{4}$ + 4 x $\frac{1}{24}$ = 1	M1 For $\sum xp$ (at least 2 non- zero terms correct) A1 CAO	
	E(X ²) = 1 x $\frac{1}{3}$ + 4 x $\frac{1}{4}$ + 16 x $\frac{1}{24}$ = 2 So Var(X) = 2 - 1 ² = 1	M1 for $\sum x^2 p$ (at least 2 non- zero terms correct) M1 <i>dep</i> for – their E(X) ² A1 FT their E(X) provided	
		$\operatorname{Var}(X) > 0$	5
		TOTAL	8

2	V = D(10, 0, 2)		
3	$ \begin{array}{c} A \sim \mathcal{B}(10, 0.2) \\ P(X < 4) = P(X < 2) = 0.9701 \end{array} $	M1 for $V < 2$	
(I)	$P(\Lambda < 4) = P(\Lambda \le 5) = 0.8/91$	$\begin{array}{c} \text{IVII IOF } X \geq 5 \\ A \end{array}$	
	OR attempt to sum $P(X = 0, 1, 2, 3)$ using $X \sim P(10, 0, 2)$ are seen $M1 = A1$	AI	•
(**)	B(10,0.2) can score W11, A1	D1 Definition of	4
(11)	Let p = the probability that a bowl is imperfect	BI Definition of p	
	$H_0: p = 0.2$ $H_1: p < 0.2$	B1, B1	3
	$X \sim B(20,0.2)$ $P(X \le 3) = 0.2061$ $0.2061 > 5\%$ Cannot reject H_0 and so insufficient evidenceto claim a reduction.OR using critical region method:	B1 for 0.2061 seen M1 for this comparison A1 <i>dep</i> for comment <u>in context</u>	
	CR is $\{0\}$ B1, 2 not in CR M1, A1 as above		3
		TOTAL	8
4	The company could increase the mean weight.	B1 CAO	Ū
(i)	The company could decrease the standard	B1	
	deviation.		
			2
	Sample mean = 11409/25 = 456.36	B1	
(11)	$S_{xx} = 5206937 - \frac{11409^2}{25} = 325.76$ Sample s d = $\sqrt{325.76} = 3.68$	M1 for S_{xx}	
	Sample s.d = $\sqrt{-24}$ = 3.00		-
		momt	3
_		TOTAL	5
5 (i)	$P(A \cap B) = 0.4$	BICAO	1
(ii)	P(C U D) = 0.6	B1 CAO	1
			1
(iii)	Events B and C are mutually exclusive.	B1 CAO	_
			1
(iv)	$P(B) = 0.6, P(D) = 0.4 \text{ and } P(B \cap D) = 0.2$	B1 for $P(B \cap D) = 0.2$ soi	
	$0.6 \ge 0.4 \neq 0.2$ (so B and D not independent)	E1	2
		TOTAL	5
6 (i)	Number of selections $= \begin{pmatrix} 12 \\ 7 \end{pmatrix} = 792$	M1 for $\begin{pmatrix} 12 \\ 7 \end{pmatrix}$ A1 CAO	•
(;;)	Number of errongements 71 5040	M1 for 71 A1 CAO	2
(11)	Number of arrangements = /! = 5040	TOTAL	2 4

_						
7	Mean score = $(2x8 + 3x7 + 4x6 + 5 + 4)/11 =$				M1 for $\sum fx/11$	
(i)	6.26			A1 CAO		
	6.36					2
(**)	40 - Francisco Panelle					2
(II)	40 Prequency benany				C1 Linear consible cooles	
					GI Linear sensible scales	
	30				G1 fds of 8 28 38 26 6 or $4k$	
					$14k \ 19k \ 13k \ 3k$ for sensible	
	20				values of k either on script or	
					on graph	
	10				on gruph.	
	10				G1 (dep on reasonable attempt	
					at fd) Appropriate label for	
	0 4 4.5 5	5 5.5 6	6.5 7	7.5 8 8.5	vertical scale eg 'Frequency density', 'frequency per ¹ / ₂	
			Mean GCS	E Score		
					unit', 'students per mean	
					GCSE score'. (allow Key)	3
(iii)	Mid	f	fx	fx²		
	point, x				B1 mid points	
	5	8	40	200		
	5.75	14	80.5	462.875		
	6.25	19	118.75	742.1875	B1FT $\sum fx$ and $\sum fx^2$	
	6.75	13	87.75	592.3125		
	7.5	6	45	337.5		
		60	372	2334.875		
	Sample mea	n = 372/60	= 6.2		B1 CAO	
	S = 2334	875 372^2	- 28 175			
	$S_{xx} = 2334.$	60	- 20.475		M1 for their S_{xx}	
		28 475				
	Sample s.d = $\sqrt{\frac{26.475}{50}} = 0.695$				A1 CAO	5
		¥ 37				3
$(\mathbf{i}\mathbf{v})$	Prediction	$f_{score} = 12$	x71 16	- 50 2	M1 For 13×74 46	
(\mathbf{IV})	Prediction of score = $15 \times 7.4 - 40 = 50.2$				$A_1 dep op 50.2 (or 50) seen$	2
(w)	Prediction o	$f_{\text{score}} = 13$	x 55 46	- 25 5	M1 For $13 \times 55 - 46$	4
(\mathbf{v})	1 rediction 0	1 score = 15	x 3.3 - 40	- 25.5	WITT OF 15 X 5.5 - 40	
	So predicted	l grade wou	ld he D/E		A1 dep on 25 5 (or 26 or 25)	
	(allow D or	E)			seen	
	Because sco	re roughly l	nalfway froi	m 20 to 30.	E1 For explanation of	
	OR (for D)	closer to D t	han E	7	conversion – logical	
	OR (for E) past E but not up to D boundary				statement/argument that	
					supports their choice.	3
(vi)	Mean = $13 \times 6.2 - 46 = 34.6$			B1 FT their 6.2		
	Standard deviation = $13 \times 0.695 = 9.035$				M1 for 13 x their 0.695	
					A1 FT	3
					TOTAL	18

8 (i)	P(all jam)	M1 5 x 4 x 3 or $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$ in	
(1)	5 4 3	numerator	
	$= \frac{12}{12} \times \frac{11}{11} \times \frac{10}{10}$	M1 12 x 11 x 10 or $\binom{12}{1}$ in	
	$=\frac{1}{22}=0.04545$	denominator	
		A1 CAO	3
(ii)	P(all same) = $\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} + \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{3}{12} \times \frac{2}{11} \times \frac{1}{10}$	M1 Sum of 3 reasonable triples or combinations M1 Triples or combinations correct	
	$= \frac{1}{22} + \frac{1}{55} + \frac{1}{220} = \frac{3}{44} = 0.06818$	A1 CAO	3
(iii)	P(all different)	M1 5,4,3	
	$= 6 \times \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$	M1 $6 \times$ three fractions or $\begin{pmatrix} 12 \\ 3 \end{pmatrix}$	
	$= \frac{3}{11} = 0.2727$	denom. A1 CAO	
			3
(1V)	P(all jam given all same) = $\frac{1}{22} / \frac{3}{44} = \frac{2}{3}$	M1 Their (i) in numerator M1 Their (ii) in denominator	
		A1 CAO	3
(v)	P(all jam exactly twice)	M1 for $\binom{5}{2}$ x	
	$= \binom{5}{2} \times \left(\frac{1}{22}\right)^2 \times \left(\frac{21}{22}\right)^3 = 0.01797$	M1 for their $p^2 q^3$ A1 CAO	3
(vi)	P(all jam at least once) $(21)^5$	M1 for their a^5	
	$=1-\left(\frac{21}{22}\right)=0.2075$	M1 indep for $1 - 5^{th}$ power A1 CAO	
			3
		TOTAL	18